Summary
SCOPC (Strong-Coupling for Optimal Plasmon-Catalysis) will provide a theoretical methodology and detailed investigation to improve photo-chemical plasmonic catalysis and extend it with a non-intrusive control-strategy. I will efficiently embed realistic external electromagnetic environments into first-principles density-functional theory calculations. Shaping this electromagnetic environment into the form of a resonator, the ‘resonator, plasmonic particle and molecule’ constitute multi-component cavities which provide non-intrusive control over the plasmon-molecule dynamics by means of the size and quality of the external resonator. SCOPC paves a way to control photo-absorption cross-section and catalytic features on-the-flight without the need to change structure or composition of the nanoparticles. In addition, I will resolve current limitations of first-principles QED. Especially the limitation to treat only very few molecules strongly coupled to a photonic environment stands in clear conflict with experimental reality, a problem that will be resolved with the help of subsystem density-functional theory. I will provide a detailed study from first-principles on the impact of strong light-matter coupling on plasmonic catalysis and energy-transfer in general. SCOPC adds a new facet to plasmonic catalysis and delivers vital extensions to first-principles QED.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/101065117 |
| Start date: | 18-01-2023 |
| End date: | 11-01-2025 |
| Total budget - Public funding: | - 222 727,00 Euro |
Cordis data
Original description
SCOPC (Strong-Coupling for Optimal Plasmon-Catalysis) will provide a theoretical methodology and detailed investigation to improve photo-chemical plasmonic catalysis and extend it with a non-intrusive control-strategy. I will efficiently embed realistic external electromagnetic environments into first-principles density-functional theory calculations. Shaping this electromagnetic environment into the form of a resonator, the resonator, plasmonic particle and molecule constitute multi-component cavities which provide non-intrusive control over the plasmon-molecule dynamics by means of the size and quality of the external resonator. SCOPC paves a way to control photo-absorption cross-section and catalytic features on-the-flight without the need to change structure or composition of the nanoparticles. In addition, I will resolve current limitations of first-principles QED. Especially the limitation to treat only very few molecules strongly coupled to a photonic environment stands in clear conflict with experimental reality, a problem that will be resolved with the help of subsystem density-functional theory. I will provide a detailed study from first-principles on the impact of strong light-matter coupling on plasmonic catalysis and energy-transfer in general. SCOPC adds a new facet to plasmonic catalysis and delivers vital extensions to first-principles QED.Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Geographical location(s)