Summary
In recent decades, considerable progress has been made in bio-nano research towards a growing understanding of the interaction mechanisms between nanoparticles (NPs) and living systems. Yet, the impact that cell-internalised NPs have on exosome secretion remains largely unknown. Exosomes are ubiquitous cell-released vesicles seemingly involved in numerous biological processes, including regulation of cell-cell communication and disease progression. This enigmatic functional complexity is under the spotlight of a large scientific community in the fields of chemistry, biology and nanomedicine.
Only recently, it has been reported that in vitro cellular uptake of platinum and iron oxide NP clusters (~ 100 nm in size) significantly increases the release of exosomes and alters their composition. However, it is unclear whether this evidence reflects a general behaviour or depends on the design of the NPs. A strong need thus arises to explore the mechanistic details of this interaction. Inspired by this challenge, NanoEXOS aims to develop a novel framework to obtain a better and more general understanding of how engineered NPs interfere with the regulatory processes of exosome formation and release. NP-cell studies will be undertaken in vitro to focus on the effects that NPs have on cell-specific exosome samples. Importantly, NanoEXOS will systematically investigate how this interaction depends on the properties of NPs (e.g. well-defined size, shape, surface modification), their biomolecular interactions and their cellular entry mechanism.
Overall, NanoEXOS will contribute to expanding our knowledge of how exogenous NPs are processed by living systems. A thorough comprehension of how NPs access and alter key cellular machineries, such as exosome secretion, plays a pivotal role in the biological evaluation of these nanomaterials. This research question is crucial to establish safe and robust biological control over advanced NP-assisted diagnostic and therapeutic strategies.
Only recently, it has been reported that in vitro cellular uptake of platinum and iron oxide NP clusters (~ 100 nm in size) significantly increases the release of exosomes and alters their composition. However, it is unclear whether this evidence reflects a general behaviour or depends on the design of the NPs. A strong need thus arises to explore the mechanistic details of this interaction. Inspired by this challenge, NanoEXOS aims to develop a novel framework to obtain a better and more general understanding of how engineered NPs interfere with the regulatory processes of exosome formation and release. NP-cell studies will be undertaken in vitro to focus on the effects that NPs have on cell-specific exosome samples. Importantly, NanoEXOS will systematically investigate how this interaction depends on the properties of NPs (e.g. well-defined size, shape, surface modification), their biomolecular interactions and their cellular entry mechanism.
Overall, NanoEXOS will contribute to expanding our knowledge of how exogenous NPs are processed by living systems. A thorough comprehension of how NPs access and alter key cellular machineries, such as exosome secretion, plays a pivotal role in the biological evaluation of these nanomaterials. This research question is crucial to establish safe and robust biological control over advanced NP-assisted diagnostic and therapeutic strategies.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/101063905 |
| Start date: | 01-09-2023 |
| End date: | 31-08-2025 |
| Total budget - Public funding: | - 199 694,00 Euro |
Cordis data
Original description
In recent decades, considerable progress has been made in bio-nano research towards a growing understanding of the interaction mechanisms between nanoparticles (NPs) and living systems. Yet, the impact that cell-internalised NPs have on exosome secretion remains largely unknown. Exosomes are ubiquitous cell-released vesicles seemingly involved in numerous biological processes, including regulation of cell-cell communication and disease progression. This enigmatic functional complexity is under the spotlight of a large scientific community in the fields of chemistry, biology and nanomedicine.Only recently, it has been reported that in vitro cellular uptake of platinum and iron oxide NP clusters (~ 100 nm in size) significantly increases the release of exosomes and alters their composition. However, it is unclear whether this evidence reflects a general behaviour or depends on the design of the NPs. A strong need thus arises to explore the mechanistic details of this interaction. Inspired by this challenge, NanoEXOS aims to develop a novel framework to obtain a better and more general understanding of how engineered NPs interfere with the regulatory processes of exosome formation and release. NP-cell studies will be undertaken in vitro to focus on the effects that NPs have on cell-specific exosome samples. Importantly, NanoEXOS will systematically investigate how this interaction depends on the properties of NPs (e.g. well-defined size, shape, surface modification), their biomolecular interactions and their cellular entry mechanism.
Overall, NanoEXOS will contribute to expanding our knowledge of how exogenous NPs are processed by living systems. A thorough comprehension of how NPs access and alter key cellular machineries, such as exosome secretion, plays a pivotal role in the biological evaluation of these nanomaterials. This research question is crucial to establish safe and robust biological control over advanced NP-assisted diagnostic and therapeutic strategies.
Status
SIGNEDCall topic
HORIZON-MSCA-2021-PF-01-01Update Date
09-02-2023
Geographical location(s)