NNESCI | Neural networks for efficient storage and communication of information

Summary
Techniques based on neural networks (NNs), the study of which is often referred to as ‘deep learning’, have recently been shown to be extremely effective as a basis for data compression systems. I will develop the new field of ‘neural compression’, which has emerged around these ideas, focussing primarily on lossless compression in the two directions which I believe are most important:

Scale: NNs go hand in hand with parallel hardware, and I will investigate new parallel compression algorithms for efficiently compressing huge quantities of data. Specifically, I will develop two entirely new compression paradigms: Firstly, compression of volumetric images using generative models based on 3D convolutions, applied to medical imaging, where teleradiology and new cloud-based analysis make the need for efficient compression particularly acute. And secondly, compression of audio and video using time-series latent variable models, known as ‘state space models’, which offer uniquely efficient utilization of parallel hardware.

Systems: I will research, design and implement a domain specific language (DSL) for concisely expressing codecs which are guaranteed to be lossless by construction. Until now, implementations of compression systems always separate the implementation of the encoder from the decoder, and rely on an ad-hoc debugging and testing process to ensure that data are recovered correctly. During my PhD, I discovered that it is sometimes possible for a computer to automatically convert an encoder function into a decoder, and vice versa, potentially halving the amount of code. I will explore the limits, in terms of flexibility and efficiency, of this novel idea, using insights from ‘automatic differentiation’, a related functional transformation, on which I am a leading expert.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101065671
Start date: 01-09-2023
End date: 31-08-2025
Total budget - Public funding: - 187 624,00 Euro
Cordis data

Original description

Techniques based on neural networks (NNs), the study of which is often referred to as ‘deep learning’, have recently been shown to be extremely effective as a basis for data compression systems. I will develop the new field of ‘neural compression’, which has emerged around these ideas, focussing primarily on lossless compression in the two directions which I believe are most important:

Scale: NNs go hand in hand with parallel hardware, and I will investigate new parallel compression algorithms for efficiently compressing huge quantities of data. Specifically, I will develop two entirely new compression paradigms: Firstly, compression of volumetric images using generative models based on 3D convolutions, applied to medical imaging, where teleradiology and new cloud-based analysis make the need for efficient compression particularly acute. And secondly, compression of audio and video using time-series latent variable models, known as ‘state space models’, which offer uniquely efficient utilization of parallel hardware.

Systems: I will research, design and implement a domain specific language (DSL) for concisely expressing codecs which are guaranteed to be lossless by construction. Until now, implementations of compression systems always separate the implementation of the encoder from the decoder, and rely on an ad-hoc debugging and testing process to ensure that data are recovered correctly. During my PhD, I discovered that it is sometimes possible for a computer to automatically convert an encoder function into a decoder, and vice versa, potentially halving the amount of code. I will explore the limits, in terms of flexibility and efficiency, of this novel idea, using insights from ‘automatic differentiation’, a related functional transformation, on which I am a leading expert.

Status

SIGNED

Call topic

HORIZON-MSCA-2021-PF-01-01

Update Date

09-02-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2021-PF-01
HORIZON-MSCA-2021-PF-01-01 MSCA Postdoctoral Fellowships 2021