LASIQ | Photonic Laser Integration for Metrology and Quantum Systems

Summary
In LASIQ I will develop, for the first time, an on-chip titanium-sapphire mode-locked laser capable of generating low-noise optical frequency combs in the 650-1100 nm wavelength range.

Optical frequency comb generators are light sources capable of generating a spectrum of millions of equally spaced laser lines. Such light sources allow to down-convert optical frequencies (THz) to the microwave domain (GHz), enabling precision laser spectroscopy and the construction of optical atomic clocks. Theodor Hänsch and John Hall were awarded the Nobel Prize in physics of 2005 for developing the optical frequency comb in recognition of its impact on quantum metrology, timekeeping and fundamental physics. Since their initial development, they have revolutionized several other fields such as LIDAR (light detection and ranging), molecular spectroscopy, astronomic spectroscopy for exoplanet identification and ultra-low-noise microwave generation.

However, high-performance optical frequency combs are mostly based on expensive (>100 kEUR) and bulky (> 900 cm3) free-space or fiber-based mode-locked laser systems, which strongly limits their use in real-world applications. This has spurred an enormous research effort towards developing on-chip optical frequency comb generators. Currently, a large variety of integrated optical comb generators have been demonstrated, ranging from soliton microcombs to semiconductor mode-locked lasers. However, so far integrated optical comb generators cannot rival the performance of their table-top counterparts, severely limiting their application. In LASIQ, I will address this need by demonstrating titanium-sapphire mode-locked lasers on a millimeter-sized chip with a performance similar to that of the incumbent free-space solution.

The realization of an on-chip titanium-sapphire mode-locked laser will enable chip-scale supercontinuum sources, integrated optical coherence tomography systems, on-chip optical atomic clocks and dual-comb metrology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101078281
Start date: 01-09-2023
End date: 31-12-2028
Total budget - Public funding: 1 490 625,00 Euro - 1 490 625,00 Euro
Cordis data

Original description

In LASIQ I will develop, for the first time, an on-chip titanium-sapphire mode-locked laser capable of generating low-noise optical frequency combs in the 650-1100 nm wavelength range.

Optical frequency comb generators are light sources capable of generating a spectrum of millions of equally spaced laser lines. Such light sources allow to down-convert optical frequencies (THz) to the microwave domain (GHz), enabling precision laser spectroscopy and the construction of optical atomic clocks. Theodor Hänsch and John Hall were awarded the Nobel Prize in physics of 2005 for developing the optical frequency comb in recognition of its impact on quantum metrology, timekeeping and fundamental physics. Since their initial development, they have revolutionized several other fields such as LIDAR (light detection and ranging), molecular spectroscopy, astronomic spectroscopy for exoplanet identification and ultra-low-noise microwave generation.

However, high-performance optical frequency combs are mostly based on expensive (>100 kEUR) and bulky (> 900 cm3) free-space or fiber-based mode-locked laser systems, which strongly limits their use in real-world applications. This has spurred an enormous research effort towards developing on-chip optical frequency comb generators. Currently, a large variety of integrated optical comb generators have been demonstrated, ranging from soliton microcombs to semiconductor mode-locked lasers. However, so far integrated optical comb generators cannot rival the performance of their table-top counterparts, severely limiting their application. In LASIQ, I will address this need by demonstrating titanium-sapphire mode-locked lasers on a millimeter-sized chip with a performance similar to that of the incumbent free-space solution.

The realization of an on-chip titanium-sapphire mode-locked laser will enable chip-scale supercontinuum sources, integrated optical coherence tomography systems, on-chip optical atomic clocks and dual-comb metrology.

Status

SIGNED

Call topic

ERC-2022-STG

Update Date

31-07-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-STG ERC STARTING GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-STG ERC STARTING GRANTS