COBLIM | Label-free multimodal real-time imaging of phage-induced bacterial lysis

Summary
The fast-growing number of multidrug-resistant bacterial strains is one of the biggest threats to public health. 5 million deaths and billions of euros are associated with drug-resistant bacterial infections per year. Lately, bacteriophages have become an alternative way to increasingly failing traditional direct-acting small antibiotic molecules. However, a deep and detailed understanding of the processes connected to bacteriophage-induced bacterial lysis is still missing. This project aims to develop a unique optical-based multimodal imaging technique for high-speed real-time imaging of phage-induced lysis of bacteria. The suggested tailored combination of coherent brightfield microscopy allowing for fast, label-free, and long-term single bioparticle imaging with advanced electro-optic fluorescence lifetime imaging allowing for dynamic molecular proximity sensing will be a worldwide unique prototype. For the first time, the technique will allow for direct label-free tracking of bacteriophages and simultaneous detection of changes in the inner bacterial environment (e.g., change in pH) and bacterial metabolism during all stages of infection. This will provide a great pool of information currently lacking, that will facilitate and accelerate phage and antimicrobial research. The method can be easily adapted for other bacterial or mammalian cells and single-bioparticle and particle studies, finding its place in drug delivery, cell interaction studies, or tracking particles in cells. Due to the uniqueness of the set of information that currently cannot be gained (under the same conditions) with any other technique, we expect the technology to become standard in future life science imaging.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101106807
Start date: 01-10-2023
End date: 31-12-2025
Total budget - Public funding: - 183 600,00 Euro
Cordis data

Original description

The fast-growing number of multidrug-resistant bacterial strains is one of the biggest threats to public health. 5 million deaths and billions of euros are associated with drug-resistant bacterial infections per year. Lately, bacteriophages have become an alternative way to increasingly failing traditional direct-acting small antibiotic molecules. However, a deep and detailed understanding of the processes connected to bacteriophage-induced bacterial lysis is still missing. This project aims to develop a unique optical-based multimodal imaging technique for high-speed real-time imaging of phage-induced lysis of bacteria. The suggested tailored combination of coherent brightfield microscopy allowing for fast, label-free, and long-term single bioparticle imaging with advanced electro-optic fluorescence lifetime imaging allowing for dynamic molecular proximity sensing will be a worldwide unique prototype. For the first time, the technique will allow for direct label-free tracking of bacteriophages and simultaneous detection of changes in the inner bacterial environment (e.g., change in pH) and bacterial metabolism during all stages of infection. This will provide a great pool of information currently lacking, that will facilitate and accelerate phage and antimicrobial research. The method can be easily adapted for other bacterial or mammalian cells and single-bioparticle and particle studies, finding its place in drug delivery, cell interaction studies, or tracking particles in cells. Due to the uniqueness of the set of information that currently cannot be gained (under the same conditions) with any other technique, we expect the technology to become standard in future life science imaging.

Status

SIGNED

Call topic

HORIZON-MSCA-2022-PF-01-01

Update Date

31-07-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2022-PF-01
HORIZON-MSCA-2022-PF-01-01 MSCA Postdoctoral Fellowships 2022