High-TheQ | Thermalization at High Energies

Summary
Thermalization of closed quantum systems is central to the modern understanding of matter, from ultracold to ultrahot. High-TheQ studies thermalization of quantum fields excited by nuclear collisions at RHIC and LHC to energy densities equivalent to trillions of Kelvins. In such extreme environments hadrons melt and the equilibrium state is the quark-gluon plasma. Theoretical control over thermalization at high energies is crucially needed for understanding when and how this equilibrium phase emerges in the experiments.

The current theoretical paradigm for thermalization in quantum chromodynamics is based on hydrodynamic and non-thermal attractors (fixed points). They are novel examples of universal dynamics of non-equilibrium quantum fields. Both were found in idealized settings of nuclear collisions with high degree of symmetries and in particular corners of a microscopic parameter space. The goal of High-TheQ is to understand thermalization in quantum field theory beyond these idealizations. Do hydrodynamic attractors appear for off-central nuclear collisions? Is there a gravity dual to a non-thermal attractor? Do non-thermal and hydrodynamic attractors have a common origin, such as spontaneous symmetry breaking?

To answer these questions, High-TheQ will adopt an interdisciplinary methodology, including data-driven approaches, mathematics of transseries and higher-curvature gravity. High-TheQ is firmly rooted in my long-term efforts on ab initio modelling of thermalization at strong coupling, pioneering the use of transseries in non-equilibrium dynamics of relativistic systems and introducing hydrodynamic attractors. This gives me a unique opportunity to decisively advance the field with High-TheQ.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101089093
Start date: 01-10-2023
End date: 30-09-2028
Total budget - Public funding: 1 950 000,00 Euro - 1 950 000,00 Euro
Cordis data

Original description

Thermalization of closed quantum systems is central to the modern understanding of matter, from ultracold to ultrahot. High-TheQ studies thermalization of quantum fields excited by nuclear collisions at RHIC and LHC to energy densities equivalent to trillions of Kelvins. In such extreme environments hadrons melt and the equilibrium state is the quark-gluon plasma. Theoretical control over thermalization at high energies is crucially needed for understanding when and how this equilibrium phase emerges in the experiments.

The current theoretical paradigm for thermalization in quantum chromodynamics is based on hydrodynamic and non-thermal attractors (fixed points). They are novel examples of universal dynamics of non-equilibrium quantum fields. Both were found in idealized settings of nuclear collisions with high degree of symmetries and in particular corners of a microscopic parameter space. The goal of High-TheQ is to understand thermalization in quantum field theory beyond these idealizations. Do hydrodynamic attractors appear for off-central nuclear collisions? Is there a gravity dual to a non-thermal attractor? Do non-thermal and hydrodynamic attractors have a common origin, such as spontaneous symmetry breaking?

To answer these questions, High-TheQ will adopt an interdisciplinary methodology, including data-driven approaches, mathematics of transseries and higher-curvature gravity. High-TheQ is firmly rooted in my long-term efforts on ab initio modelling of thermalization at strong coupling, pioneering the use of transseries in non-equilibrium dynamics of relativistic systems and introducing hydrodynamic attractors. This gives me a unique opportunity to decisively advance the field with High-TheQ.

Status

SIGNED

Call topic

ERC-2022-COG

Update Date

31-07-2023
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.0 Cross-cutting call topics
ERC-2022-COG ERC CONSOLIDATOR GRANTS
HORIZON.1.1.1 Frontier science
ERC-2022-COG ERC CONSOLIDATOR GRANTS