LO-KMOF | Vapour-deposited metal-organic frameworks as high-performance gap-filling dielectrics for nanoelectronics

Summary
Since the invention of integrated circuits, there has been a persistent incentive towards miniaturization. An indispensable part of every chip is a multi-level wiring system fabricated on top of the semiconductor layer containing the transistors. As transistors get smaller and more densely packed, the complexity and the impact on performance of the on-chip interconnects rises. The non-zero resistance and capacitance associated with the metal wires and the dielectric medium between them induce cross-talk noise between adjacent interconnects, limit the speed of signal propagation and increase the power consumption of a chip.

The LO-KMOF project proposes an approach to alleviate these issues by integrating for the first time metal-organic frameworks as an interconnect dielectric. The project will make use of a novel vapour phase deposition approach for these materials, developed in the ERC project VAPORE. If successful, the project will contribute to chips that are not only faster but also consume less power. The proposed technology will be validated in an industrially relevant demonstrator.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/875577
Start date: 01-09-2019
End date: 28-02-2021
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Since the invention of integrated circuits, there has been a persistent incentive towards miniaturization. An indispensable part of every chip is a multi-level wiring system fabricated on top of the semiconductor layer containing the transistors. As transistors get smaller and more densely packed, the complexity and the impact on performance of the on-chip interconnects rises. The non-zero resistance and capacitance associated with the metal wires and the dielectric medium between them induce cross-talk noise between adjacent interconnects, limit the speed of signal propagation and increase the power consumption of a chip.

The LO-KMOF project proposes an approach to alleviate these issues by integrating for the first time metal-organic frameworks as an interconnect dielectric. The project will make use of a novel vapour phase deposition approach for these materials, developed in the ERC project VAPORE. If successful, the project will contribute to chips that are not only faster but also consume less power. The proposed technology will be validated in an industrially relevant demonstrator.

Status

CLOSED

Call topic

ERC-2019-POC

Update Date

27-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-PoC