Atlas | Atlas

Summary
The human subcortex is a highly crowded brain area, which consists of hundreds of unique, small grey matter nuclei constituting approximately ¼ of total human brain volume. Importantly, only approximately 7% of these nuclei are currently accessible in standard human brain magnetic resonance imaging (MRI) atlases (Forstmann et al., 2016). This low percentage can have several imaging related causes, including the small size of subcortical nuclei as compared to the voxel size, which is particularly relevant when applying 1.5 or 3 Tesla (T) MRI. Additionally, the challenges posed by the large distance of the subcortex from the head coil may be a cause. In light of the vast amount of uncharted brain areas, one can also think of the human subcortex as ‘terra incognita’. The aim of this proposal is to chart ‘terra incognita’ to create a tool to identify and localize new targets for DBS.
Major efforts of my group have already been directed towards resolving at least part of the challenges of imaging the human subcortex through the development of ultra-high field resolution 7T magnetic resonance imaging (UHF-MRI) sequences tailored to image the subcortex. Within our project ‘Atlasing the human subcortex’, collaborations with world-leading companies in DBS technology such as Boston Scientific (http://www.vercise.com/index.cfm) have been established. Here, we aim to extend these efforts by applying for funding for research personnel that will execute the manual segmentations and validation of new potentially more efficient target areas for DBS neurosurgery. These efforts will lead to creating probabilistic atlas maps for DBS surgery with unprecedented detail as well as a 3D app for educational purposes both in the clinical and basic neurosciences. These efforts will ultimately lead to commercial products that have already attracted attention of world-leading DBS companies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/811285
Start date: 01-03-2019
End date: 28-02-2022
Total budget - Public funding: 150 000,00 Euro - 150 000,00 Euro
Cordis data

Original description

The human subcortex is a highly crowded brain area, which consists of hundreds of unique, small grey matter nuclei constituting approximately ¼ of total human brain volume. Importantly, only approximately 7% of these nuclei are currently accessible in standard human brain magnetic resonance imaging (MRI) atlases (Forstmann et al., 2016). This low percentage can have several imaging related causes, including the small size of subcortical nuclei as compared to the voxel size, which is particularly relevant when applying 1.5 or 3 Tesla (T) MRI. Additionally, the challenges posed by the large distance of the subcortex from the head coil may be a cause. In light of the vast amount of uncharted brain areas, one can also think of the human subcortex as ‘terra incognita’. The aim of this proposal is to chart ‘terra incognita’ to create a tool to identify and localize new targets for DBS.
Major efforts of my group have already been directed towards resolving at least part of the challenges of imaging the human subcortex through the development of ultra-high field resolution 7T magnetic resonance imaging (UHF-MRI) sequences tailored to image the subcortex. Within our project ‘Atlasing the human subcortex’, collaborations with world-leading companies in DBS technology such as Boston Scientific (http://www.vercise.com/index.cfm) have been established. Here, we aim to extend these efforts by applying for funding for research personnel that will execute the manual segmentations and validation of new potentially more efficient target areas for DBS neurosurgery. These efforts will lead to creating probabilistic atlas maps for DBS surgery with unprecedented detail as well as a 3D app for educational purposes both in the clinical and basic neurosciences. These efforts will ultimately lead to commercial products that have already attracted attention of world-leading DBS companies.

Status

CLOSED

Call topic

ERC-2018-PoC

Update Date

27-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2018
ERC-2018-PoC