gAIa | Scalable Co-optimization of Collective Robotic Mobility and the Artificial Environment

Summary
The behavior of intelligent systems, both living and artificial, is influenced through the structure of their surrounding environment. In nature, environmental constraints dictate the creation, unfolding, and interaction of living beings. Living systems are prototypes for collective robot behaviors— yet, despite the obvious influence of spatial constraints on interactions, the optimization of mobile robots and their immediate environment has been disjoint. Little thought has been given to what would make an artificial environment conducive to effective and efficient collective robotic mobility.

The premise of this project is that the environment is as much a variable as the robot itself. I want to expose the coupling between environmental structure and collective robotic mobility. In pursuit of this goal, I propose a co-optimization scheme that finds the best robot-environment pairs in an automated, scalable manner. The work in this project will (i) optimize control policies that define the behavior of collective mobile robot systems, and (ii) find environments that are more conducive to efficient coordination and cooperation. The developed techniques will allow us to perform first-of-a-kind analyses that would reveal novel environmental paradigms and the collective robot policies optimized around them. Ultimately, this project will spearhead new ways of thinking about transport planning and urban design, in the wake of a new generation of mobile vehicles that are connected and coordinated.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/949940
Start date: 01-01-2021
End date: 30-06-2026
Total budget - Public funding: 1 495 338,00 Euro - 1 495 338,00 Euro
Cordis data

Original description

The behavior of intelligent systems, both living and artificial, is influenced through the structure of their surrounding environment. In nature, environmental constraints dictate the creation, unfolding, and interaction of living beings. Living systems are prototypes for collective robot behaviors— yet, despite the obvious influence of spatial constraints on interactions, the optimization of mobile robots and their immediate environment has been disjoint. Little thought has been given to what would make an artificial environment conducive to effective and efficient collective robotic mobility.

The premise of this project is that the environment is as much a variable as the robot itself. I want to expose the coupling between environmental structure and collective robotic mobility. In pursuit of this goal, I propose a co-optimization scheme that finds the best robot-environment pairs in an automated, scalable manner. The work in this project will (i) optimize control policies that define the behavior of collective mobile robot systems, and (ii) find environments that are more conducive to efficient coordination and cooperation. The developed techniques will allow us to perform first-of-a-kind analyses that would reveal novel environmental paradigms and the collective robot policies optimized around them. Ultimately, this project will spearhead new ways of thinking about transport planning and urban design, in the wake of a new generation of mobile vehicles that are connected and coordinated.

Status

SIGNED

Call topic

ERC-2020-STG

Update Date

27-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-STG