Summary
                        
        
                            Single-molecule magnets (SMMs) display magnetic hysteresis that is molecular in origin, and these materials have huge potential to be developed as nano-scale devices. The big challenge is to create SMMs that function without the need for liquid-helium cooling.
This project will develop new SMMs that combine the strong magnetic anisotropy of lanthanide ions with a series of novel radical ligands. Our innovative SMMs will have controllable molecular and electronic structures, which will ultimately enable hysteresis at unprecedented temperatures.
Highly unusual di- and tri-metallic Ln-SMMs are proposed in which the metals are bridged by radicals with heavy Group 15 (phosphorus-bismuth) and Group 16 (sulphur-tellurium) donor atoms. Trimetallic SMMs will also be based on hexaazatriphenylene (HAT) radicals, and dimetallic SMMs will also be based on nindigo radicals, both of which are nitrogen-donor ligands.
The SMM field is dominated by systems with diamagnetic ligands. Our radical ligands have never been used in SMM studies: their diffuse unpaired spin provides a way of switching off the quantum tunnelling mechanisms that otherwise prevent hysteresis. We will exploit the rich electrochemistry of the target ligands: heavy p-block radicals have huge spin densities on the donor atoms; HAT radicals can have up to three unpaired electrons; reduced or oxidized nindigo radicals allow access to redox-switchable SMMs. In the HAT-bridged SMMs, the use of ligands with more than one unpaired electron is unprecedented. The heavy p-block ligands are themselves are novel.
The PI’s approach to SMMs has already established new directions in lanthanide chemistry and in molecular magnetism. He now proposes a new, radical approach to SMMs with potential to re-define the state of the art, and to extend the frontiers of a vibrant multi-disciplinary field. Achieving the aims will provide a major step towards using SMMs for applications at practical temperatures.
    
        This project will develop new SMMs that combine the strong magnetic anisotropy of lanthanide ions with a series of novel radical ligands. Our innovative SMMs will have controllable molecular and electronic structures, which will ultimately enable hysteresis at unprecedented temperatures.
Highly unusual di- and tri-metallic Ln-SMMs are proposed in which the metals are bridged by radicals with heavy Group 15 (phosphorus-bismuth) and Group 16 (sulphur-tellurium) donor atoms. Trimetallic SMMs will also be based on hexaazatriphenylene (HAT) radicals, and dimetallic SMMs will also be based on nindigo radicals, both of which are nitrogen-donor ligands.
The SMM field is dominated by systems with diamagnetic ligands. Our radical ligands have never been used in SMM studies: their diffuse unpaired spin provides a way of switching off the quantum tunnelling mechanisms that otherwise prevent hysteresis. We will exploit the rich electrochemistry of the target ligands: heavy p-block radicals have huge spin densities on the donor atoms; HAT radicals can have up to three unpaired electrons; reduced or oxidized nindigo radicals allow access to redox-switchable SMMs. In the HAT-bridged SMMs, the use of ligands with more than one unpaired electron is unprecedented. The heavy p-block ligands are themselves are novel.
The PI’s approach to SMMs has already established new directions in lanthanide chemistry and in molecular magnetism. He now proposes a new, radical approach to SMMs with potential to re-define the state of the art, and to extend the frontiers of a vibrant multi-disciplinary field. Achieving the aims will provide a major step towards using SMMs for applications at practical temperatures.
            Unfold all
        
        /
        
            Fold all
        
    
                                 
                    More information & hyperlinks
                        
        | Web resources: | https://cordis.europa.eu/project/id/646740 | 
| Start date: | 01-09-2015 | 
| End date: | 28-02-2021 | 
| Total budget - Public funding: | 1 584 202,30 Euro - 1 584 202,00 Euro | 
                                Cordis data
                        
        Original description
Single-molecule magnets (SMMs) display magnetic hysteresis that is molecular in origin, and these materials have huge potential to be developed as nano-scale devices. The big challenge is to create SMMs that function without the need for liquid-helium cooling.This project will develop new SMMs that combine the strong magnetic anisotropy of lanthanide ions with a series of novel radical ligands. Our innovative SMMs will have controllable molecular and electronic structures, which will ultimately enable hysteresis at unprecedented temperatures.
Highly unusual di- and tri-metallic Ln-SMMs are proposed in which the metals are bridged by radicals with heavy Group 15 (phosphorus-bismuth) and Group 16 (sulphur-tellurium) donor atoms. Trimetallic SMMs will also be based on hexaazatriphenylene (HAT) radicals, and dimetallic SMMs will also be based on nindigo radicals, both of which are nitrogen-donor ligands.
The SMM field is dominated by systems with diamagnetic ligands. Our radical ligands have never been used in SMM studies: their diffuse unpaired spin provides a way of switching off the quantum tunnelling mechanisms that otherwise prevent hysteresis. We will exploit the rich electrochemistry of the target ligands: heavy p-block radicals have huge spin densities on the donor atoms; HAT radicals can have up to three unpaired electrons; reduced or oxidized nindigo radicals allow access to redox-switchable SMMs. In the HAT-bridged SMMs, the use of ligands with more than one unpaired electron is unprecedented. The heavy p-block ligands are themselves are novel.
The PI’s approach to SMMs has already established new directions in lanthanide chemistry and in molecular magnetism. He now proposes a new, radical approach to SMMs with potential to re-define the state of the art, and to extend the frontiers of a vibrant multi-disciplinary field. Achieving the aims will provide a major step towards using SMMs for applications at practical temperatures.
Status
CLOSEDCall topic
ERC-CoG-2014Update Date
27-04-2024
                        
                        Geographical location(s)
                    
                         
                             
                             
                             
                            