ReWoMeN | Recall dynamics of working memory networks: Modeling, analysis, and applications

Summary
Memory and learning are human central cognitive abilities. The importance of understanding human memory functioning is evident from its central role in our cognitive health as well as its role as the main inspiration behind developments in artificial intelligence, in particular artificial deep neural networks (DNN). Despite considerable progress in the recent years in the area of DNNs, robustness of these networks is an important open issue. In particular, noise robustness, i.e., DNNs are fragile in maintaining the correct predictions if their input is perturbed. In contrast, a healthy human’s memory system maintains performance despite perturbed inputs. This motivates us to learn from the biological neuronal networks of human memory for a more robust DNN. The human memory is composed of several modules responsible for processing, learning, and recalling the received information. Among the memory modules is the working memory (WM) which is responsible for holding and processing information in a temporary fashion and in service of higher order cognitive tasks, e.g. decision making. The short-term nature of the WM makes it a great example for designing dynamic DNNs, which are useful in safety critical applications in uncertain environments. The aim of this proposal is to build a combined model-based and data-driven mathematical framework for understanding Recall dynamics of human Working Memory Networks (ReWoMeN) for realization of a robust DNN as well as contributing to the mechanistic understanding of the human WM. ReWoMeN address three main challenges including derivation of a biologically plausible system-level model to account for the measured data of human experience of WM recalling, analysis of such a complex model for explaining and predicting WM behavior, and comparing the robustness of our WM model with a recurrent DNN in an image recognition application.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030415
Start date: 01-06-2021
End date: 31-05-2023
Total budget - Public funding: 175 572,48 Euro - 175 572,00 Euro
Cordis data

Original description

Memory and learning are human central cognitive abilities. The importance of understanding human memory functioning is evident from its central role in our cognitive health as well as its role as the main inspiration behind developments in artificial intelligence, in particular artificial deep neural networks (DNN). Despite considerable progress in the recent years in the area of DNNs, robustness of these networks is an important open issue. In particular, noise robustness, i.e., DNNs are fragile in maintaining the correct predictions if their input is perturbed. In contrast, a healthy human’s memory system maintains performance despite perturbed inputs. This motivates us to learn from the biological neuronal networks of human memory for a more robust DNN. The human memory is composed of several modules responsible for processing, learning, and recalling the received information. Among the memory modules is the working memory (WM) which is responsible for holding and processing information in a temporary fashion and in service of higher order cognitive tasks, e.g. decision making. The short-term nature of the WM makes it a great example for designing dynamic DNNs, which are useful in safety critical applications in uncertain environments. The aim of this proposal is to build a combined model-based and data-driven mathematical framework for understanding Recall dynamics of human Working Memory Networks (ReWoMeN) for realization of a robust DNN as well as contributing to the mechanistic understanding of the human WM. ReWoMeN address three main challenges including derivation of a biologically plausible system-level model to account for the measured data of human experience of WM recalling, analysis of such a complex model for explaining and predicting WM behavior, and comparing the robustness of our WM model with a recurrent DNN in an image recognition application.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships