NANO-Q | Cavity Cooling of Nanosilicon for Quantum Interference Experiments

Summary
The ability to control and exploit the virtues of quantum physics is expected to revolutionize many areas of science and technology, from quantum information processing to quantum enhanced metrology. However, it is still a great challenge to observe quantum effects, such as superposition, in truly macroscopic objects. Matter-wave interferometry with very massive particles is a promising route towards testing the notions of macroscopicity and the still speculative limits of linearity in quantum physics.
An intriguing goal in the community is to control the motion of mesoscopic nanoparticles, from 10^7 to 10^10 a.m.u., to the point where quantum interference can be observed. In this mass range collapse models and the role of gravity in quantum theory can be explored. It is a great challenge to control the motion of objects larger and more complicated than atoms and simple molecules. Recent proposals and experiments have begun the task, using optical cavities to cool the motion of nanoparticles, aiming to reach the level at which quantum effects are evident. The feasibility of this goal has been demonstrated experimentally by the Host Group, the Experienced Researcher and others, driven and supported by theoretical work.
The NANO-Q project aims to create a source of free cavity cooled nanoparticles suitable for mesoscopic matter wave interferometry. It would be a great scientific breakthrough to observe quantum effects with such massive objects. Cooled nanoparticles will also be of great technological importance, as quantum transducers and precision force sensors .
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/654532
Start date: 16-05-2015
End date: 15-05-2017
Total budget - Public funding: 166 156,80 Euro - 166 156,00 Euro
Cordis data

Original description

The ability to control and exploit the virtues of quantum physics is expected to revolutionize many areas of science and technology, from quantum information processing to quantum enhanced metrology. However, it is still a great challenge to observe quantum effects, such as superposition, in truly macroscopic objects. Matter-wave interferometry with very massive particles is a promising route towards testing the notions of macroscopicity and the still speculative limits of linearity in quantum physics.
An intriguing goal in the community is to control the motion of mesoscopic nanoparticles, from 10^7 to 10^10 a.m.u., to the point where quantum interference can be observed. In this mass range collapse models and the role of gravity in quantum theory can be explored. It is a great challenge to control the motion of objects larger and more complicated than atoms and simple molecules. Recent proposals and experiments have begun the task, using optical cavities to cool the motion of nanoparticles, aiming to reach the level at which quantum effects are evident. The feasibility of this goal has been demonstrated experimentally by the Host Group, the Experienced Researcher and others, driven and supported by theoretical work.
The NANO-Q project aims to create a source of free cavity cooled nanoparticles suitable for mesoscopic matter wave interferometry. It would be a great scientific breakthrough to observe quantum effects with such massive objects. Cooled nanoparticles will also be of great technological importance, as quantum transducers and precision force sensors .

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)