Summary
In the arms race between prey and predators, diverse anti-predator defence mechanisms evolved. To avoid predation, many insects developed camouflage (crypsis) or chemicals that render them distasteful or toxic. To warn of their unpalatability, many insects evolved striking warning colours or patterns (aposematism). Insects comprise most of the diet of bats. Some of these nocturnal predators glean resting, silent, motionless diurnal insects from the vegetation. Instead of using vision during foraging, they produce ultrasonic calls and detect their prey through echolocation.
Here, I want to research whether visually cryptic or aposematic insects also have cryptic or aposematic acoustic reflection properties, to hide from or signal their unpalatability to echolocating bats. I will use bio-inspired sensor systems to acquire echo-acoustic sonar recordings of selected insect species and conduct behavioural prey-detection and -capture experiments using live bats to explore the prevailing acoustic predator-prey interactions. Based on these experiments, I will apply neural network algorithms for classifying and analysing the distinguishing features in different insect echoes. This approach will allow an in-depth investigation of the underlying acoustic mechanisms of the interaction between prey and predators and will inform and inspire biomimetic applications for detecting and identifying objects by sonar. Further, the project will lead to synergism between the research fields of biology and engineering in the study of animal interactions and bio-inspired robotics.
Combining sensory ecology and animal behaviour with applied engineering, signal processing, bio-inspired sensor systems, and neural network applications, will positively impact on my career development. In addition, the scientific training, and transferable skills gained will substantially contribute to my career as an independent, interdisciplinary researcher, and a successful group leader.
Here, I want to research whether visually cryptic or aposematic insects also have cryptic or aposematic acoustic reflection properties, to hide from or signal their unpalatability to echolocating bats. I will use bio-inspired sensor systems to acquire echo-acoustic sonar recordings of selected insect species and conduct behavioural prey-detection and -capture experiments using live bats to explore the prevailing acoustic predator-prey interactions. Based on these experiments, I will apply neural network algorithms for classifying and analysing the distinguishing features in different insect echoes. This approach will allow an in-depth investigation of the underlying acoustic mechanisms of the interaction between prey and predators and will inform and inspire biomimetic applications for detecting and identifying objects by sonar. Further, the project will lead to synergism between the research fields of biology and engineering in the study of animal interactions and bio-inspired robotics.
Combining sensory ecology and animal behaviour with applied engineering, signal processing, bio-inspired sensor systems, and neural network applications, will positively impact on my career development. In addition, the scientific training, and transferable skills gained will substantially contribute to my career as an independent, interdisciplinary researcher, and a successful group leader.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/101026935 |
| Start date: | 01-09-2022 |
| End date: | 31-08-2024 |
| Total budget - Public funding: | 166 320,00 Euro - 166 320,00 Euro |
Cordis data
Original description
In the arms race between prey and predators, diverse anti-predator defence mechanisms evolved. To avoid predation, many insects developed camouflage (crypsis) or chemicals that render them distasteful or toxic. To warn of their unpalatability, many insects evolved striking warning colours or patterns (aposematism). Insects comprise most of the diet of bats. Some of these nocturnal predators glean resting, silent, motionless diurnal insects from the vegetation. Instead of using vision during foraging, they produce ultrasonic calls and detect their prey through echolocation.Here, I want to research whether visually cryptic or aposematic insects also have cryptic or aposematic acoustic reflection properties, to hide from or signal their unpalatability to echolocating bats. I will use bio-inspired sensor systems to acquire echo-acoustic sonar recordings of selected insect species and conduct behavioural prey-detection and -capture experiments using live bats to explore the prevailing acoustic predator-prey interactions. Based on these experiments, I will apply neural network algorithms for classifying and analysing the distinguishing features in different insect echoes. This approach will allow an in-depth investigation of the underlying acoustic mechanisms of the interaction between prey and predators and will inform and inspire biomimetic applications for detecting and identifying objects by sonar. Further, the project will lead to synergism between the research fields of biology and engineering in the study of animal interactions and bio-inspired robotics.
Combining sensory ecology and animal behaviour with applied engineering, signal processing, bio-inspired sensor systems, and neural network applications, will positively impact on my career development. In addition, the scientific training, and transferable skills gained will substantially contribute to my career as an independent, interdisciplinary researcher, and a successful group leader.
Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Geographical location(s)
Structured mapping