Summary
                        
        
                            The goal of the TECTONIC project is to alleviate the challenging problem of hot-spots in 3D stacked chip-multiprocessors by employing a software-hardware based combined approach. With the stagnation in process technology scaling new emerging memory technologies are investigated. Promise of better scalability with reduced static leakage makes Non-volatile memories (NVM) as the potential candidates to replace conventional SRAM. However, many of the proposed NVM technologies are sensitive to heat, that raised up the issue of reliability. Considering heat dissipation as an exclusive issue of hardware will not be the appropriate approach towards finding out the solutions, as running-application has direct impacts on on-chip thermal imbalance. Hence, TECTONIC will manage the on-chip temperature and eliminate hot-spots by leveraging application specific knowledge extracted at compile time in combination with new hardware mechanisms for distributing computational work and memory accesses for even heat distribution while maintaining high performance.
                    
    
        
            Unfold all
        
        /
        
            Fold all
        
    
                                 
                    More information & hyperlinks
                        
        | Web resources: | https://cordis.europa.eu/project/id/898296 | 
| Start date: | 01-01-2021 | 
| End date: | 31-12-2022 | 
| Total budget - Public funding: | 214 158,72 Euro - 214 158,00 Euro | 
                                Cordis data
                        
        Original description
The goal of the TECTONIC project is to alleviate the challenging problem of hot-spots in 3D stacked chip-multiprocessors by employing a software-hardware based combined approach. With the stagnation in process technology scaling new emerging memory technologies are investigated. Promise of better scalability with reduced static leakage makes Non-volatile memories (NVM) as the potential candidates to replace conventional SRAM. However, many of the proposed NVM technologies are sensitive to heat, that raised up the issue of reliability. Considering heat dissipation as an exclusive issue of hardware will not be the appropriate approach towards finding out the solutions, as running-application has direct impacts on on-chip thermal imbalance. Hence, TECTONIC will manage the on-chip temperature and eliminate hot-spots by leveraging application specific knowledge extracted at compile time in combination with new hardware mechanisms for distributing computational work and memory accesses for even heat distribution while maintaining high performance.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
                        
                        Geographical location(s)
                    
                         
                             
                             
                            