Summary
The need for area selective deposition (ASD): Nanoscale patterning of materials is becoming a key issue for a broad range of devices, especially
in the back end of line (BEOL). With the introduction of Intel’s latest 10nm node earlier this year, it is vital to develop new ways to master selective
deposition of materials at the nanoscale, preferably without the use of lithographic and etching steps, as they can be time-consuming, expensive
and mainly subtractive processes. Novel concepts are thus needed to enhance local deposition while decreasing the use of expensive
technological steps. Selective deposition is expected to lead to a paradigm shift in patterning at future semiconductor technology nodes. Area
Selective Deposition (ASD) by ALD brings several potential benefits for future device processing and provides a route to overcome process
integration challenges at the sub 10 nm nodes, i.e. overlay and lithographic misalignment related issues both in the front end of line (FEOL) and
back end of line (BEOL) schemes. Essentially, what ASD gives is spatial control over a deposited thin film. This is the objective of the innovative
NADIA proposal which is now a very relevant topic.
in the back end of line (BEOL). With the introduction of Intel’s latest 10nm node earlier this year, it is vital to develop new ways to master selective
deposition of materials at the nanoscale, preferably without the use of lithographic and etching steps, as they can be time-consuming, expensive
and mainly subtractive processes. Novel concepts are thus needed to enhance local deposition while decreasing the use of expensive
technological steps. Selective deposition is expected to lead to a paradigm shift in patterning at future semiconductor technology nodes. Area
Selective Deposition (ASD) by ALD brings several potential benefits for future device processing and provides a route to overcome process
integration challenges at the sub 10 nm nodes, i.e. overlay and lithographic misalignment related issues both in the front end of line (FEOL) and
back end of line (BEOL) schemes. Essentially, what ASD gives is spatial control over a deposited thin film. This is the objective of the innovative
NADIA proposal which is now a very relevant topic.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/888163 |
| Start date: | 01-09-2020 |
| End date: | 31-08-2022 |
| Total budget - Public funding: | 178 320,00 Euro - 178 320,00 Euro |
Cordis data
Original description
The need for area selective deposition (ASD): Nanoscale patterning of materials is becoming a key issue for a broad range of devices, especiallyin the back end of line (BEOL). With the introduction of Intel’s latest 10nm node earlier this year, it is vital to develop new ways to master selective
deposition of materials at the nanoscale, preferably without the use of lithographic and etching steps, as they can be time-consuming, expensive
and mainly subtractive processes. Novel concepts are thus needed to enhance local deposition while decreasing the use of expensive
technological steps. Selective deposition is expected to lead to a paradigm shift in patterning at future semiconductor technology nodes. Area
Selective Deposition (ASD) by ALD brings several potential benefits for future device processing and provides a route to overcome process
integration challenges at the sub 10 nm nodes, i.e. overlay and lithographic misalignment related issues both in the front end of line (FEOL) and
back end of line (BEOL) schemes. Essentially, what ASD gives is spatial control over a deposited thin film. This is the objective of the innovative
NADIA proposal which is now a very relevant topic.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Geographical location(s)