SinMolTermination | Single-molecule visualisation of eukaryotic DNA replication termination to uncover novel mechanisms of replication stress

Summary
Replication-stress is a key driving force of cancer development, neurodegeneration and ageing. Many sources of replication stress associated with the initiation and elongation phases of DNA replication have been discovered. In contrast, little is known about the mechanisms of replication termination and termination-associated replication stress. Recent breakthroughs identified the first elements of a mechanism of replication termination that involved ubiquitination of the Mcm7 subunit of the CMG helicase. However, we do not know how terminating replisomes signal themselves for ubiquitination, nor how this is regulated both temporally and spatially along chromatin. By combining sophisticated single-molecule imaging techniques with the ability of Xenopus extracts to replicate DNA in a physiological manner, we will for the first time, be able to watch individual replication forks terminate. Importantly, our multidisciplinary and single-molecule approach will allow us to bypass the constraints posed by ensemble techniques that have hindered progress in this field. Specifically, we will define the spatial and temporal conditions upon which Mcm7 becomes ubiquitinated and how this is connected to the fate of the CMG helicase during termination. These observations will enable us to determine a complete mechanistic understanding of vertebrate replication termination for the first time. We will also discover how failed DNA replication termination triggers replication stress. Revealing these novel mechanisms of replication stress allows for new therapeutic targets to be identified and potentially facilitates new disease prevention strategies to be recognised.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/794962
Start date: 11-02-2019
End date: 15-04-2021
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Replication-stress is a key driving force of cancer development, neurodegeneration and ageing. Many sources of replication stress associated with the initiation and elongation phases of DNA replication have been discovered. In contrast, little is known about the mechanisms of replication termination and termination-associated replication stress. Recent breakthroughs identified the first elements of a mechanism of replication termination that involved ubiquitination of the Mcm7 subunit of the CMG helicase. However, we do not know how terminating replisomes signal themselves for ubiquitination, nor how this is regulated both temporally and spatially along chromatin. By combining sophisticated single-molecule imaging techniques with the ability of Xenopus extracts to replicate DNA in a physiological manner, we will for the first time, be able to watch individual replication forks terminate. Importantly, our multidisciplinary and single-molecule approach will allow us to bypass the constraints posed by ensemble techniques that have hindered progress in this field. Specifically, we will define the spatial and temporal conditions upon which Mcm7 becomes ubiquitinated and how this is connected to the fate of the CMG helicase during termination. These observations will enable us to determine a complete mechanistic understanding of vertebrate replication termination for the first time. We will also discover how failed DNA replication termination triggers replication stress. Revealing these novel mechanisms of replication stress allows for new therapeutic targets to be identified and potentially facilitates new disease prevention strategies to be recognised.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017