Ob_GLP1 | Dissecting and leveraging glucagon-like peptide-1 brain pathways in obesity

Summary
Obesity is a major health challenge in the EU and globally, and yet the best drug therapies achieve only modest reductions in weight loss and require life-long treatment. To prevent and treat obesity it is crucial we understand the neural pathways controlling appetite and how they can be ‘hijacked’ therapeutically. The brain glucagon-like peptide-1 (GLP1) system is a promising target. GLP1 receptor agonists (GLP1RAs) decrease food intake and bodyweight in obese patients, effects which are mediated by two brain regions: the arcuate nucleus of the hypothalamus (Arc) and the nucleus of the solitary tract (NTS). This project, Ob_GLP1, combines the neuroscience background of Dr Holt with the next-generation technology and imaging expertise of Dr Hodson to test the hypothesis that obesity disrupts the function of GLP1RA-responsive Arc and NTS circuits and that obesity can be rescued by selectively targeting intracellular signalling in GLP1RA-activated neurons. This hypothesis will be tested through the completion of four independent, yet complementary work packages. Work package 1-3 will determine the effect of obesity on 1) GLP1RA access to the Arc and NTS measured using fluorescently labelled GLP1R antagonist and whole-brain light-sheet microscopy; 2) the molecular distribution and oligomerisation state of GLP1Rs in the Arc and NTS; and 3) the innervation pattern and synaptic density of Arc and NTS GLP1R neurons. Work package 4 will assess the potential of a novel GLP1-conjugated antisense nucleotide as an effective anti-obesity treatment. Ob_GLP1 will advance our knowledge of the brain’s control over obesity, while allowing Dr Holt to reintegrate into the European research environment and will facilitate substantial two-way transfer of knowledge between the host lab and Dr Holt, ultimately benefitting both parties, as well as society as a whole.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101024590
Start date: 01-09-2022
End date: 31-08-2024
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Obesity is a major health challenge in the EU and globally, and yet the best drug therapies achieve only modest reductions in weight loss and require life-long treatment. To prevent and treat obesity it is crucial we understand the neural pathways controlling appetite and how they can be ‘hijacked’ therapeutically. The brain glucagon-like peptide-1 (GLP1) system is a promising target. GLP1 receptor agonists (GLP1RAs) decrease food intake and bodyweight in obese patients, effects which are mediated by two brain regions: the arcuate nucleus of the hypothalamus (Arc) and the nucleus of the solitary tract (NTS). This project, Ob_GLP1, combines the neuroscience background of Dr Holt with the next-generation technology and imaging expertise of Dr Hodson to test the hypothesis that obesity disrupts the function of GLP1RA-responsive Arc and NTS circuits and that obesity can be rescued by selectively targeting intracellular signalling in GLP1RA-activated neurons. This hypothesis will be tested through the completion of four independent, yet complementary work packages. Work package 1-3 will determine the effect of obesity on 1) GLP1RA access to the Arc and NTS measured using fluorescently labelled GLP1R antagonist and whole-brain light-sheet microscopy; 2) the molecular distribution and oligomerisation state of GLP1Rs in the Arc and NTS; and 3) the innervation pattern and synaptic density of Arc and NTS GLP1R neurons. Work package 4 will assess the potential of a novel GLP1-conjugated antisense nucleotide as an effective anti-obesity treatment. Ob_GLP1 will advance our knowledge of the brain’s control over obesity, while allowing Dr Holt to reintegrate into the European research environment and will facilitate substantial two-way transfer of knowledge between the host lab and Dr Holt, ultimately benefitting both parties, as well as society as a whole.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships