Summary
                        
        
                            The demand for plastic packaging is predicted to triple to >285 million tons by 2050, bringing on well-recognized problems around the use of fossil feedstocks. Biodegradable bioplastics, especially polylactic acid (PLA), offer a promising solution to replace plastic packaging. However, the production of PLA currently depends mainly on food crops as key feedstock and requires significant amounts of agricultural land and fresh water. There is a urgent need for innovative bioplastic production technologies that do not take over our land, water and food production system.
Dutch applicant Photanol leverages a proprietary technology to produce lactic acid, the key ingredient for PLA, directly out of CO2 and sunlight. Its revolutionary platform technology is based on the combination of optimized bacterial strains and tailor-made photo-bioreactors, enabling direct conversion of the limitless available CO2 feedstock into lactic acid and a production efficacy that is 7x higher than crop plants. In the process, 1.6 tonnes CO2 are captured per ton lactic acid and 24x less land and 25x water are used compared to current methods.
Photanol is led by experienced biotech entrepreneurs, chemical industry representatives and scientific leaders. The award-winning biotech SME has reached important up-scaling milestones obtaining permits and successful construction and operation of a first-of-a-kind outside pilot plant. As next step, Photanol aims to construct a full commercial production plant (operational in 2024, with an expected annual gross profit of €75 million). This project will address all technical, operational, economic and financial barriers before scale-up to commercial size. The project will allow Photanol to demonstrate the commercial potential of its technology and expand the company from 21 to >70 FTE by 2024. Ultimately, Photanol aims to become a key enabler of a revolution in the chemical industry that will decouple any kind of chemical from fossil feedstocks.
    
        Dutch applicant Photanol leverages a proprietary technology to produce lactic acid, the key ingredient for PLA, directly out of CO2 and sunlight. Its revolutionary platform technology is based on the combination of optimized bacterial strains and tailor-made photo-bioreactors, enabling direct conversion of the limitless available CO2 feedstock into lactic acid and a production efficacy that is 7x higher than crop plants. In the process, 1.6 tonnes CO2 are captured per ton lactic acid and 24x less land and 25x water are used compared to current methods.
Photanol is led by experienced biotech entrepreneurs, chemical industry representatives and scientific leaders. The award-winning biotech SME has reached important up-scaling milestones obtaining permits and successful construction and operation of a first-of-a-kind outside pilot plant. As next step, Photanol aims to construct a full commercial production plant (operational in 2024, with an expected annual gross profit of €75 million). This project will address all technical, operational, economic and financial barriers before scale-up to commercial size. The project will allow Photanol to demonstrate the commercial potential of its technology and expand the company from 21 to >70 FTE by 2024. Ultimately, Photanol aims to become a key enabler of a revolution in the chemical industry that will decouple any kind of chemical from fossil feedstocks.
            Unfold all
        
        /
        
            Fold all
        
    
                                 
                    More information & hyperlinks
                        
        | Web resources: | https://cordis.europa.eu/project/id/880336 | 
| Start date: | 01-12-2019 | 
| End date: | 30-11-2021 | 
| Total budget - Public funding: | 3 234 375,00 Euro - 2 264 062,00 Euro | 
                                Cordis data
                        
        Original description
The demand for plastic packaging is predicted to triple to >285 million tons by 2050, bringing on well-recognized problems around the use of fossil feedstocks. Biodegradable bioplastics, especially polylactic acid (PLA), offer a promising solution to replace plastic packaging. However, the production of PLA currently depends mainly on food crops as key feedstock and requires significant amounts of agricultural land and fresh water. There is a urgent need for innovative bioplastic production technologies that do not take over our land, water and food production system.Dutch applicant Photanol leverages a proprietary technology to produce lactic acid, the key ingredient for PLA, directly out of CO2 and sunlight. Its revolutionary platform technology is based on the combination of optimized bacterial strains and tailor-made photo-bioreactors, enabling direct conversion of the limitless available CO2 feedstock into lactic acid and a production efficacy that is 7x higher than crop plants. In the process, 1.6 tonnes CO2 are captured per ton lactic acid and 24x less land and 25x water are used compared to current methods.
Photanol is led by experienced biotech entrepreneurs, chemical industry representatives and scientific leaders. The award-winning biotech SME has reached important up-scaling milestones obtaining permits and successful construction and operation of a first-of-a-kind outside pilot plant. As next step, Photanol aims to construct a full commercial production plant (operational in 2024, with an expected annual gross profit of €75 million). This project will address all technical, operational, economic and financial barriers before scale-up to commercial size. The project will allow Photanol to demonstrate the commercial potential of its technology and expand the company from 21 to >70 FTE by 2024. Ultimately, Photanol aims to become a key enabler of a revolution in the chemical industry that will decouple any kind of chemical from fossil feedstocks.
Status
CLOSEDCall topic
EIC-SMEInst-2018-2020Update Date
27-10-2022
                        
                        Geographical location(s)
                    
                        
                                
                    Structured mapping
                        
        
            Unfold all
        
        /
        
            Fold all
        
     
                             
                             
                            