Summary
To elucidate our understanding of amine chemistry in the interstellar medium (ISM), we propose a two-year project to study the physical and chemical properties of CH3NH and CH2NH2, the two simplest substituted aminogen radicals, using the state-of-the-art chirped pulse Fourier transform (sub)millimeter rotational spectroscopy. Amines are important N-bearing molecules in the ISM and planetary atmospheres, as well as a trace molecule released to the Earth's atmosphere via various human activities. The simplest prime amine, CH3NH2, is proposed to be the precursors of interstellar glycine, the simplest amino acid. The physical and chemical properties of CH3NH and CH2NH2, however, are far from well understood. CH3NH and CH2NH2 are the intermediate products formed during the H-abstraction of CH3NH2 by UV photolysis or oxidation, which are important processes both in the ISM and in the Earth's atmosphere.
These two radicals, however, are not directly observed in the H-abstraction process, neither have they been discovered in the ISM. Direct measurement of these radicals via rotational spectroscopy will provide us with detailed information about their molecular structure and chemical properties, which can be further used to search for their existence in the ISM, to study the reaction dynamics of H-abstraction of CH3NH2, and to determining their molecular structure and internal motions. The results will improve our understanding of the role of CH3NH2 in the chemistry of N-bearing molecules in the ISM and in planetary atmospheres. In this proposal, we will elaborate the approach and the implementation of the objective of the direct measurement of CH3NH and CH2NH2. Support information about the researcher, the supervisor, and the host institution is also provided.
These two radicals, however, are not directly observed in the H-abstraction process, neither have they been discovered in the ISM. Direct measurement of these radicals via rotational spectroscopy will provide us with detailed information about their molecular structure and chemical properties, which can be further used to search for their existence in the ISM, to study the reaction dynamics of H-abstraction of CH3NH2, and to determining their molecular structure and internal motions. The results will improve our understanding of the role of CH3NH2 in the chemistry of N-bearing molecules in the ISM and in planetary atmospheres. In this proposal, we will elaborate the approach and the implementation of the objective of the direct measurement of CH3NH and CH2NH2. Support information about the researcher, the supervisor, and the host institution is also provided.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/894508 |
| Start date: | 01-09-2020 |
| End date: | 31-08-2022 |
| Total budget - Public funding: | 196 707,84 Euro - 196 707,00 Euro |
Cordis data
Original description
To elucidate our understanding of amine chemistry in the interstellar medium (ISM), we propose a two-year project to study the physical and chemical properties of CH3NH and CH2NH2, the two simplest substituted aminogen radicals, using the state-of-the-art chirped pulse Fourier transform (sub)millimeter rotational spectroscopy. Amines are important N-bearing molecules in the ISM and planetary atmospheres, as well as a trace molecule released to the Earth's atmosphere via various human activities. The simplest prime amine, CH3NH2, is proposed to be the precursors of interstellar glycine, the simplest amino acid. The physical and chemical properties of CH3NH and CH2NH2, however, are far from well understood. CH3NH and CH2NH2 are the intermediate products formed during the H-abstraction of CH3NH2 by UV photolysis or oxidation, which are important processes both in the ISM and in the Earth's atmosphere.These two radicals, however, are not directly observed in the H-abstraction process, neither have they been discovered in the ISM. Direct measurement of these radicals via rotational spectroscopy will provide us with detailed information about their molecular structure and chemical properties, which can be further used to search for their existence in the ISM, to study the reaction dynamics of H-abstraction of CH3NH2, and to determining their molecular structure and internal motions. The results will improve our understanding of the role of CH3NH2 in the chemistry of N-bearing molecules in the ISM and in planetary atmospheres. In this proposal, we will elaborate the approach and the implementation of the objective of the direct measurement of CH3NH and CH2NH2. Support information about the researcher, the supervisor, and the host institution is also provided.
Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Geographical location(s)