Summary
Increasing connectivity and automation presents many opportunities and challenges for society. Emerging technology can benefit all citizens with better communication, increased environmental sustainability, autonomous transport, safer roads,, the list is almost inexhaustible. These emerging technologies will disrupt existing business models including underwriting and risk transfer. This disruption can stifle venture capital, innovation and risk taking in key emerging technologies and can inhibit regulatory development and societal acceptance.
My research will examine Connected and Autonomous Vehicles (CAV) cybersecurity risks and mitigation using Machine Learning (ML) techniques to predict future risks, price insurance policies and and thereby foster innovation and entrepreneurial activity in Europe. My research will go beyond the SoA and implement models in ML like ensemble models and deep learning to forecast the risks of CAV technology. A network model of interactions will be trained and evaluated to study cascading of risks and threats in the CAV environment.
My host team at the University of Limerick have members with machine learning skills, actuarial skills, ethical skills and underwriting experience. I will have access to staff development programmes, training courses, workshops, online courses and internal meetings. My host team are directly connected to a large variety of colleagues in other EU locations in both academic and industry positions. I will work with my host and partners to develop my research and increase my skillsets.
My research directly contributes to several UN sustainable development goals. On a personal level, the impact of my fellowship and collaborations will expand my set of skills, both research-related and transferable ones, leading to greatly improved career prospects both in and outside academia. My new abilities will include enhanced machine learning capabilities, cyber risk expertise and risk engineering skills.
My research will examine Connected and Autonomous Vehicles (CAV) cybersecurity risks and mitigation using Machine Learning (ML) techniques to predict future risks, price insurance policies and and thereby foster innovation and entrepreneurial activity in Europe. My research will go beyond the SoA and implement models in ML like ensemble models and deep learning to forecast the risks of CAV technology. A network model of interactions will be trained and evaluated to study cascading of risks and threats in the CAV environment.
My host team at the University of Limerick have members with machine learning skills, actuarial skills, ethical skills and underwriting experience. I will have access to staff development programmes, training courses, workshops, online courses and internal meetings. My host team are directly connected to a large variety of colleagues in other EU locations in both academic and industry positions. I will work with my host and partners to develop my research and increase my skillsets.
My research directly contributes to several UN sustainable development goals. On a personal level, the impact of my fellowship and collaborations will expand my set of skills, both research-related and transferable ones, leading to greatly improved career prospects both in and outside academia. My new abilities will include enhanced machine learning capabilities, cyber risk expertise and risk engineering skills.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/844864 |
| Start date: | 01-09-2019 |
| End date: | 06-10-2021 |
| Total budget - Public funding: | 196 590,72 Euro - 196 590,00 Euro |
Cordis data
Original description
Increasing connectivity and automation presents many opportunities and challenges for society. Emerging technology can benefit all citizens with better communication, increased environmental sustainability, autonomous transport, safer roads,, the list is almost inexhaustible. These emerging technologies will disrupt existing business models including underwriting and risk transfer. This disruption can stifle venture capital, innovation and risk taking in key emerging technologies and can inhibit regulatory development and societal acceptance.My research will examine Connected and Autonomous Vehicles (CAV) cybersecurity risks and mitigation using Machine Learning (ML) techniques to predict future risks, price insurance policies and and thereby foster innovation and entrepreneurial activity in Europe. My research will go beyond the SoA and implement models in ML like ensemble models and deep learning to forecast the risks of CAV technology. A network model of interactions will be trained and evaluated to study cascading of risks and threats in the CAV environment.
My host team at the University of Limerick have members with machine learning skills, actuarial skills, ethical skills and underwriting experience. I will have access to staff development programmes, training courses, workshops, online courses and internal meetings. My host team are directly connected to a large variety of colleagues in other EU locations in both academic and industry positions. I will work with my host and partners to develop my research and increase my skillsets.
My research directly contributes to several UN sustainable development goals. On a personal level, the impact of my fellowship and collaborations will expand my set of skills, both research-related and transferable ones, leading to greatly improved career prospects both in and outside academia. My new abilities will include enhanced machine learning capabilities, cyber risk expertise and risk engineering skills.
Status
TERMINATEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Geographical location(s)