AbQuantumSpec | Abelianisation of Connections, Quantum Curves, and Spectral Clusters

Summary
This cross-disciplinary project lies at the interface of geometry, mathematical physics, perturbation theory, and integrable systems, combining techniques from algebraic topology, cluster algebras, ordinary differential equations, and asymptotic analysis. The main goal is to advance our understanding of the geometry of character varieties and their quantisation. This project -- carried out by Nikita Nikolaev under the supervision of Marta Mazzocco at the University of Birmingham -- is expected to result in a fundamental innovation in geometry and have important implications for quantum field theory. It will open a vast new scientific arena and will serve to establish Nikolaev amongst research leaders in this highly active research area. Character varieties are geometric spaces which are ubiquitous in mathematics and physics, where they capture important topological and quantum invariants. These spaces parameterise singular complex ordinary differential equations (such as the Airy and Bessel equations, or even time-independent Schrödinger equations), as well as their generalisations: meromorphic connections on vector bundles over a Riemann surface. However, character varieties are usually complicated singular spaces, so the valuable information they encode is not easy to access. This project will develop a new method to describe character varieties called abelianisation. Ideas behind abelianisation stem from the WKB method in quantum mechanics and have recently resurfaced in the context of quantum field theory and string theory. Abelianisation will allow to construct special coordinate systems on character varieties (called spectral coordinates) which naturally capture crucially important geometric structure of character varieties (most prominently the symplectic and cluster structures). In other words, spectral coordinates will be a geometric gadget to decrypt mathematical and physical information encrypted in character varieties.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026083
Start date: 01-09-2022
End date: 31-08-2024
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

This cross-disciplinary project lies at the interface of geometry, mathematical physics, perturbation theory, and integrable systems, combining techniques from algebraic topology, cluster algebras, ordinary differential equations, and asymptotic analysis. The main goal is to advance our understanding of the geometry of character varieties and their quantisation. This project -- carried out by Nikita Nikolaev under the supervision of Marta Mazzocco at the University of Birmingham -- is expected to result in a fundamental innovation in geometry and have important implications for quantum field theory. It will open a vast new scientific arena and will serve to establish Nikolaev amongst research leaders in this highly active research area. Character varieties are geometric spaces which are ubiquitous in mathematics and physics, where they capture important topological and quantum invariants. These spaces parameterise singular complex ordinary differential equations (such as the Airy and Bessel equations, or even time-independent Schrdinger equations), as well as their generalisations: meromorphic connections on vector bundles over a Riemann surface. However, character varieties are usually complicated singular spaces, so the valuable information they encode is not easy to access. This project will develop a new method to describe character varieties called abelianisation. Ideas behind abelianisation stem from the WKB method in quantum mechanics and have recently resurfaced in the context of quantum field theory and string theory. Abelianisation will allow to construct special coordinate systems on character varieties (called spectral coordinates) which naturally capture crucially important geometric structure of character varieties (most prominently the symplectic and cluster structures). In other words, spectral coordinates will be a geometric gadget to decrypt mathematical and physical information encrypted in character varieties.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships