Summary
The emission of greenhouse gases (GHGs), especially of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), is the major source of global warming and climate change. To monitor their emissions, one can find in the market highly sensitive and selective, complex, bulky and expensive instruments, used as reference measuring systems, which can only be installed in few specific locations. For an accurate spatial control of these emissions, however, large number of sensing systems need to be installed and connected, benefitting from Internet of Things (IoT) and providing the required ubiquity. Usually these devices do not need to meet the sensitivity level of the reference instruments.
The present project addresses the development, fabrication and testing of gas sensors, suitable for IoT, made from advanced metal organic frameworks (MOFs) materials. These gas sensors will be multivariable devices, providing the simultaneous readout of the change of electrical and optical properties when exposed to gaseous species, in opposition to standard gas sensing devices, that deliver one single readout. This innovative approach is expected to present advantages over the standard devices, especially in terms of miniaturization, compactness and selectivity, as they are integrated nanoelectronic noses. The developed devices will be tested towards GHGs and will be benchmarked against environmental reference stations.
The present project addresses the development, fabrication and testing of gas sensors, suitable for IoT, made from advanced metal organic frameworks (MOFs) materials. These gas sensors will be multivariable devices, providing the simultaneous readout of the change of electrical and optical properties when exposed to gaseous species, in opposition to standard gas sensing devices, that deliver one single readout. This innovative approach is expected to present advantages over the standard devices, especially in terms of miniaturization, compactness and selectivity, as they are integrated nanoelectronic noses. The developed devices will be tested towards GHGs and will be benchmarked against environmental reference stations.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/101030015 |
| Start date: | 01-11-2021 |
| End date: | 31-01-2024 |
| Total budget - Public funding: | 160 932,48 Euro - 160 932,00 Euro |
Cordis data
Original description
The emission of greenhouse gases (GHGs), especially of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), is the major source of global warming and climate change. To monitor their emissions, one can find in the market highly sensitive and selective, complex, bulky and expensive instruments, used as reference measuring systems, which can only be installed in few specific locations. For an accurate spatial control of these emissions, however, large number of sensing systems need to be installed and connected, benefitting from Internet of Things (IoT) and providing the required ubiquity. Usually these devices do not need to meet the sensitivity level of the reference instruments.The present project addresses the development, fabrication and testing of gas sensors, suitable for IoT, made from advanced metal organic frameworks (MOFs) materials. These gas sensors will be multivariable devices, providing the simultaneous readout of the change of electrical and optical properties when exposed to gaseous species, in opposition to standard gas sensing devices, that deliver one single readout. This innovative approach is expected to present advantages over the standard devices, especially in terms of miniaturization, compactness and selectivity, as they are integrated nanoelectronic noses. The developed devices will be tested towards GHGs and will be benchmarked against environmental reference stations.
Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Geographical location(s)
Structured mapping