GemDEFC | Single layer N-doped Graphene modified polymer Electrolyte Membrane with aligned nanowire electrodes for Direct Ethanol Fuel Cells

Summary
Direct ethanol fuel cells (DEFCs), benefiting from low operating temperature, environment-friendly operation, simplicity, quick start-up and shutdown, have been demonstrated as sources of portable and backup power in consumer electronic devices. If bio-ethanol, as the most used bio-fuel world-wide with an existing supply chain and infrastructure, is used, the carbon emission from DEFCs can be considered as zero. These advantages make the DEFC a potential alternative to existing technologies to fill the increasing gap between energy demand and energy storage capacity in the low power applications. However, the power performance of DEFCs is low, mainly limited by ethanol crossover through polymer electrolyte membrane (PEM) and the slow kinetic activity of ethanol oxidation reaction (EOR) at the anode. Thick membranes required to reduce the ethanol crossover but significantly increasing proton conducting resistance. A very high catalyst loading also needed at both electrodes to overcome the sluggish EOR and compensate the poisoning of the crossed ethanol. Challenges for DEFCs include reducing Pt loading and ethanol crossover to increase energy and power density, improve reliability and reduce cost. In GemDEFC, inspired by the unique proton conductivity and high impermeability to molecules of single layer graphene, the excellent mass transfer performance and catalytic activities of aligned 1D nanostructure electrodes, we’ll develop low ethanol crossover and highly proton conductive PEM modified with single layer N-doped graphene on the surface, and further hybrid with aligned Pt alloy or even platinum group metal–free (PGM-free) ZnS nanowire catalyst electrodes to achieve low-cost, high power performance and reliable DEFCs that can meet the targets for commercial applications in the low power applications. GemDEFC is built on the complementary skills of the Experienced Researcher (graphene and surface modification) and supervisors (1D nanostructures and fuel cells).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101027791
Start date: 01-09-2021
End date: 11-10-2023
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Direct ethanol fuel cells (DEFCs), benefiting from low operating temperature, environment-friendly operation, simplicity, quick start-up and shutdown, have been demonstrated as sources of portable and backup power in consumer electronic devices. If bio-ethanol, as the most used bio-fuel world-wide with an existing supply chain and infrastructure, is used, the carbon emission from DEFCs can be considered as zero. These advantages make the DEFC a potential alternative to existing technologies to fill the increasing gap between energy demand and energy storage capacity in the low power applications. However, the power performance of DEFCs is low, mainly limited by ethanol crossover through polymer electrolyte membrane (PEM) and the slow kinetic activity of ethanol oxidation reaction (EOR) at the anode. Thick membranes required to reduce the ethanol crossover but significantly increasing proton conducting resistance. A very high catalyst loading also needed at both electrodes to overcome the sluggish EOR and compensate the poisoning of the crossed ethanol. Challenges for DEFCs include reducing Pt loading and ethanol crossover to increase energy and power density, improve reliability and reduce cost. In GemDEFC, inspired by the unique proton conductivity and high impermeability to molecules of single layer graphene, the excellent mass transfer performance and catalytic activities of aligned 1D nanostructure electrodes, we’ll develop low ethanol crossover and highly proton conductive PEM modified with single layer N-doped graphene on the surface, and further hybrid with aligned Pt alloy or even platinum group metal–free (PGM-free) ZnS nanowire catalyst electrodes to achieve low-cost, high power performance and reliable DEFCs that can meet the targets for commercial applications in the low power applications. GemDEFC is built on the complementary skills of the Experienced Researcher (graphene and surface modification) and supervisors (1D nanostructures and fuel cells).

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships