HRPCDMECH | Investigating how pathogen effector recognition by the host plant activates cell death

Summary
Plants are rich sources of nutrients and water for diverse microbial communities. Some of these communities evolved parasitism as a strategy to access plant nutrients, with devastating results for crops. Plants are protected from infection by a waxy cuticular layer above the walls of epidermal cells. Would-be pathogens breaching this barrier, or entering via stomata, encounter an active plant immune system that specifically recognizes pathogens. Breaching leads to the deployment of two synergistic pathways that orchestrate immune responses. The first relies on the detection of pathogen-associated molecular patterns (PAMPs) and culminates in pattern-triggered immunity (PTI). When the first is circumvented a second array of responses takes place known as effector triggered immunity (ETI). In ETI, host factors known as R proteins recognize pathogen effectors, an event which is accompanied by the execution of a unique programmed cell death (PCD) type known as the hypersensitive response (HR). Although the initiator of the HR-PCD is known to depend on the formation of an effector-R complex, the downstream molecular events remain elusive. Previous results showed that particular proteases known as metacaspases (MCs) modulate HR-PCD, highlighting the importance of proteolysis and proteome rearrangements for HR-PCD modulation. I will attempt to shed light on the rearrangements of the HR-PCD proteome landscape, by studying processes that control it: selective RNA decapping and translation and proteolytic events, in a highly temporal manner using systematic approaches and reverse genetics. This project is expected to elucidate the importance of these processes and provide a detailed analysis of mRNA and protein level rearrangements during HR-PCD. In addition, this project will suggest strategies for enhancement of plant immunity against pathogens, which is urgently needed to sustain food security considering the ever growing earth’s population.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/656011
Start date: 01-02-2016
End date: 31-01-2018
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

Plants are rich sources of nutrients and water for diverse microbial communities. Some of these communities evolved parasitism as a strategy to access plant nutrients, with devastating results for crops. Plants are protected from infection by a waxy cuticular layer above the walls of epidermal cells. Would-be pathogens breaching this barrier, or entering via stomata, encounter an active plant immune system that specifically recognizes pathogens. Breaching leads to the deployment of two synergistic pathways that orchestrate immune responses. The first relies on the detection of pathogen-associated molecular patterns (PAMPs) and culminates in pattern-triggered immunity (PTI). When the first is circumvented a second array of responses takes place known as effector triggered immunity (ETI). In ETI, host factors known as R proteins recognize pathogen effectors, an event which is accompanied by the execution of a unique programmed cell death (PCD) type known as the hypersensitive response (HR). Although the initiator of the HR-PCD is known to depend on the formation of an effector-R complex, the downstream molecular events remain elusive. Previous results showed that particular proteases known as metacaspases (MCs) modulate HR-PCD, highlighting the importance of proteolysis and proteome rearrangements for HR-PCD modulation. I will attempt to shed light on the rearrangements of the HR-PCD proteome landscape, by studying processes that control it: selective RNA decapping and translation and proteolytic events, in a highly temporal manner using systematic approaches and reverse genetics. This project is expected to elucidate the importance of these processes and provide a detailed analysis of mRNA and protein level rearrangements during HR-PCD. In addition, this project will suggest strategies for enhancement of plant immunity against pathogens, which is urgently needed to sustain food security considering the ever growing earth’s population.

Status

TERMINATED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)