SCP-Disorder | Disordered and strongly-correlated systems: a new theoretical approach

Summary
A primary tool to understand the properties of matter is Density Functional Theory (DFT), a reformulation of the many-electron Schroedinger equation based on a functional of the electronic density (rather than the wave-function). Although such formulation is in principle exact, its practical implementation has to rely on approximations, which, despite being successful in explaining many properties of complex molecules and condensed matter, fail when correlation among electrons becomes important.
In recent years, the hosting group has developed a formalism to deal with strong correlation in density functional theory, based on the exact DFT limit of infinite coupling strength. The formalism has also been extended to bosonic systems with different kind of long-ranged repulsive interactions with very promising proof of principle results. The underlying fixed point equations that need to be solved are non-standard and very little work on the numerical side (with the exception of primitive proof of principle implementations) has been done so far.
The researcher in this project is an applied mathematician with outstanding track record in designing numerical algorithms for several different physical problems. In particular, he has developed a new method to solve the non-linear Schroedinger one-particle equations, called spectral renormalization method, which is the perfect tool to solve the fixed point problem related to the strong-coupling limit of DFT.
In this project we will put together the expertise of the researcher and of the host to bring to full maturity the new theoretical framework of DFT for strongly-correlated systems. In particular, we plan to apply the new methodology to study systems with disorder, analyzing Anderson localization in the presence of strong correlation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/797247
Start date: 01-05-2019
End date: 30-04-2021
Total budget - Public funding: 177 598,80 Euro - 177 598,00 Euro
Cordis data

Original description

A primary tool to understand the properties of matter is Density Functional Theory (DFT), a reformulation of the many-electron Schroedinger equation based on a functional of the electronic density (rather than the wave-function). Although such formulation is in principle exact, its practical implementation has to rely on approximations, which, despite being successful in explaining many properties of complex molecules and condensed matter, fail when correlation among electrons becomes important.
In recent years, the hosting group has developed a formalism to deal with strong correlation in density functional theory, based on the exact DFT limit of infinite coupling strength. The formalism has also been extended to bosonic systems with different kind of long-ranged repulsive interactions with very promising proof of principle results. The underlying fixed point equations that need to be solved are non-standard and very little work on the numerical side (with the exception of primitive proof of principle implementations) has been done so far.
The researcher in this project is an applied mathematician with outstanding track record in designing numerical algorithms for several different physical problems. In particular, he has developed a new method to solve the non-linear Schroedinger one-particle equations, called spectral renormalization method, which is the perfect tool to solve the fixed point problem related to the strong-coupling limit of DFT.
In this project we will put together the expertise of the researcher and of the host to bring to full maturity the new theoretical framework of DFT for strongly-correlated systems. In particular, we plan to apply the new methodology to study systems with disorder, analyzing Anderson localization in the presence of strong correlation.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017