Summary
Herein, we propose to design de novo (“from scratch”) the first upconverting metalloprotein. This will be achieved by exploiting a new class of lanthanide coiled coils (LCC), to generate bimetallic derivatives. These will, for the first time, combine the attractive photophysical properties of Ln complexes, with de novo designed coiled coil scaffolds capable of selectively binding different Ln ions at well-defined and tuneable distances. This programme of work will provide a new strategy for unlocking the full potential of science at the interface of biology and inorganic chemistry, by combining previously unexplored ligands with traditional inorganic complexes, for applications beyond those offered by biology, such as upconversion. The complementary expertise of Dr Borghesani (bioinorganic chemistry and spectroscopy) and the supervisor Dr Peacock (metallopeptide design) offer the unique combination to realise the full potential of multimetallic LCCs, and will, in conjunction with two planned short secondments, provide Dr Borghesani with new and cutting-edge research training.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/841956 |
| Start date: | 02-09-2019 |
| End date: | 01-09-2021 |
| Total budget - Public funding: | 212 933,76 Euro - 212 933,00 Euro |
Cordis data
Original description
Herein, we propose to design de novo (“from scratch”) the first upconverting metalloprotein. This will be achieved by exploiting a new class of lanthanide coiled coils (LCC), to generate bimetallic derivatives. These will, for the first time, combine the attractive photophysical properties of Ln complexes, with de novo designed coiled coil scaffolds capable of selectively binding different Ln ions at well-defined and tuneable distances. This programme of work will provide a new strategy for unlocking the full potential of science at the interface of biology and inorganic chemistry, by combining previously unexplored ligands with traditional inorganic complexes, for applications beyond those offered by biology, such as upconversion. The complementary expertise of Dr Borghesani (bioinorganic chemistry and spectroscopy) and the supervisor Dr Peacock (metallopeptide design) offer the unique combination to realise the full potential of multimetallic LCCs, and will, in conjunction with two planned short secondments, provide Dr Borghesani with new and cutting-edge research training.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Geographical location(s)