UCLnProt | De novo design of an UpConverting metalloProtein

Summary
Herein, we propose to design de novo (“from scratch”) the first upconverting metalloprotein. This will be achieved by exploiting a new class of lanthanide coiled coils (LCC), to generate bimetallic derivatives. These will, for the first time, combine the attractive photophysical properties of Ln complexes, with de novo designed coiled coil scaffolds capable of selectively binding different Ln ions at well-defined and tuneable distances. This programme of work will provide a new strategy for unlocking the full potential of science at the interface of biology and inorganic chemistry, by combining previously unexplored ligands with traditional inorganic complexes, for applications beyond those offered by biology, such as upconversion. The complementary expertise of Dr Borghesani (bioinorganic chemistry and spectroscopy) and the supervisor Dr Peacock (metallopeptide design) offer the unique combination to realise the full potential of multimetallic LCCs, and will, in conjunction with two planned short secondments, provide Dr Borghesani with new and cutting-edge research training.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841956
Start date: 02-09-2019
End date: 01-09-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

Herein, we propose to design de novo (“from scratch”) the first upconverting metalloprotein. This will be achieved by exploiting a new class of lanthanide coiled coils (LCC), to generate bimetallic derivatives. These will, for the first time, combine the attractive photophysical properties of Ln complexes, with de novo designed coiled coil scaffolds capable of selectively binding different Ln ions at well-defined and tuneable distances. This programme of work will provide a new strategy for unlocking the full potential of science at the interface of biology and inorganic chemistry, by combining previously unexplored ligands with traditional inorganic complexes, for applications beyond those offered by biology, such as upconversion. The complementary expertise of Dr Borghesani (bioinorganic chemistry and spectroscopy) and the supervisor Dr Peacock (metallopeptide design) offer the unique combination to realise the full potential of multimetallic LCCs, and will, in conjunction with two planned short secondments, provide Dr Borghesani with new and cutting-edge research training.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018