Summary
The aim of DarkSphere is to shine a light on the nature of Dark Matter (DM), with the NEWS-G direct detection experiment that focuses in the low mass region. Through the novel detector concept of Spherical Proportional Counters, the experiment will provide for the first time access to the 0.1 - 10 GeV mass region, which is highly motivated by the Higgs boson discovery and the non-observation of supersymmetry at the CERN Large Hadron Collider. The innovative detector concept offers a number of advantages, including: very low energy detection threshold, background rejection capabilities, and construction of large volume using solely radiopure materials. Furthermore, in contrast to other direct detection experiments, using a choice of light target gases, including hydrogen, helium, and neon, allows the NEWS-G experiment to kinematically match the target to the DM candidate mass, and thus maximise its sensitivity for each mass in the region of interest. Within the project a number of advances will be achieved in terms of detector optimisation and simulation through original measurements, background measurement methods, physics analysis with novel classification and statistical inference methods, and advances in DM phenomenology. Beyond use in fundamental physics research, the detector concepts relevant for DarkSphere have potential for industrial and medical applications, which are also explored.
Unfold all
/
Fold all
More information & hyperlinks
| Web resources: | https://cordis.europa.eu/project/id/841261 |
| Start date: | 01-05-2019 |
| End date: | 30-04-2021 |
| Total budget - Public funding: | 224 933,76 Euro - 224 933,00 Euro |
Cordis data
Original description
The aim of DarkSphere is to shine a light on the nature of Dark Matter (DM), with the NEWS-G direct detection experiment that focuses in the low mass region. Through the novel detector concept of Spherical Proportional Counters, the experiment will provide for the first time access to the 0.1 - 10 GeV mass region, which is highly motivated by the Higgs boson discovery and the non-observation of supersymmetry at the CERN Large Hadron Collider. The innovative detector concept offers a number of advantages, including: very low energy detection threshold, background rejection capabilities, and construction of large volume using solely radiopure materials. Furthermore, in contrast to other direct detection experiments, using a choice of light target gases, including hydrogen, helium, and neon, allows the NEWS-G experiment to kinematically match the target to the DM candidate mass, and thus maximise its sensitivity for each mass in the region of interest. Within the project a number of advances will be achieved in terms of detector optimisation and simulation through original measurements, background measurement methods, physics analysis with novel classification and statistical inference methods, and advances in DM phenomenology. Beyond use in fundamental physics research, the detector concepts relevant for DarkSphere have potential for industrial and medical applications, which are also explored.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Geographical location(s)