MATBFOB | MAThematical modelling of Biofilm FOrmation on Biomaterials

Summary
Biofilms play a pivotal role in healthcare-associated infections, especially those related to indwelling medical devices, such as intra-vascular and urinary catheters, cardiac pacemakers and orthopaedic implants. Many mathematical models have been developed to simulate and elucidate the main processes characterizing biofilm growth. Biofilm models have been widely acknowledged as a tool for fundamental understanding of wastewater treatment processes, the morphology of biofilm structures and for deciphering the manner in which they originate through the interaction of a couple of factors like: mass transfer, nutrient availability, detachment forces etc. However there has been very little or no endeavour to develop a suitable model for understanding the exact stages of microbial adhesion on biomaterials and the process of gradual establishment of microbial colonies on medical devices, considering the effect of substrate-microbe interactions . The proposed project consists of a brief and precise experimental part for investigating the initiation and progression of biofilm formation of Pseudomonas aeruginosa, a nosocomial pathogen, on implant surfaces through real-time monitoring.
The experimental observations will be used to mathematically model the process of growth of biofilm on a biomaterial surface, considering the effect of interactions of microbes with a specific substrate and the rate of nutrient uptake.The project will employ currently used mathematical tools to model the spatio-temporal dynamics of biofilm formation of Pseudomonas aeruginosa on different biomaterial surfaces.The model will help in visualising the manner and the rate at which bacterial infections can spread on a particular surface and correlate it with the surface properties. This will be the initiation of - model guided substrate design of implants- a brand new concept for implant manufacturers, orthopaedic surgeons, biomaterial scientists, microbiologists and biofilm modellers.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/897910
Start date: 01-09-2021
End date: 31-08-2024
Total budget - Public funding: 337 400,64 Euro - 337 400,00 Euro
Cordis data

Original description

Biofilms play a pivotal role in healthcare-associated infections, especially those related to indwelling medical devices, such as intra-vascular and urinary catheters, cardiac pacemakers and orthopaedic implants. Many mathematical models have been developed to simulate and elucidate the main processes characterizing biofilm growth. Biofilm models have been widely acknowledged as a tool for fundamental understanding of wastewater treatment processes, the morphology of biofilm structures and for deciphering the manner in which they originate through the interaction of a couple of factors like: mass transfer, nutrient availability, detachment forces etc. However there has been very little or no endeavour to develop a suitable model for understanding the exact stages of microbial adhesion on biomaterials and the process of gradual establishment of microbial colonies on medical devices, considering the effect of substrate-microbe interactions . The proposed project consists of a brief and precise experimental part for investigating the initiation and progression of biofilm formation of Pseudomonas aeruginosa, a nosocomial pathogen, on implant surfaces through real-time monitoring.
The experimental observations will be used to mathematically model the process of growth of biofilm on a biomaterial surface, considering the effect of interactions of microbes with a specific substrate and the rate of nutrient uptake.The project will employ currently used mathematical tools to model the spatio-temporal dynamics of biofilm formation of Pseudomonas aeruginosa on different biomaterial surfaces.The model will help in visualising the manner and the rate at which bacterial infections can spread on a particular surface and correlate it with the surface properties. This will be the initiation of - model guided substrate design of implants- a brand new concept for implant manufacturers, orthopaedic surgeons, biomaterial scientists, microbiologists and biofilm modellers.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019