CRISIS | Chytridiomycosis resistance through sexual selection

Summary
Sexual selection (SS) is a strong evolutionary force that can promote or inhibit adaptation to environmental challenges. When populations face novel pathogens, SS can influence their persistence by impacting the spread of resistance alleles. The major histocompatibility complex (MHC) encodes proteins that recognize pathogens. Many vertebrates preferentially mate with partners carrying beneficial MHC alleles, conferring higher resistance to the offspring.
Here, I propose to study the role of SS in the evolutionary dynamics of amphibian resistance to chytridiomycosis (pathogen Bd), an emerging infectious disease that is causing population declines and extinctions worldwide; with poison frogs, a species-rich group in which the strength of SS differs between species. i) I will test whether mate choice is influenced by MHC and infection status of both partners. ii) I will use theoretical models to predict under which circumstances SS can accelerate the evolution of disease resistance. iii) I will use population ecology to evaluate the association between the strength of SS and species’ susceptibility to Bd in natural populations.
This project will provide fundamental scientific knowledge on the relationship between SS and the evolution of immunity by exploring the interaction between Bd and amphibian MHC. It builds on the recent insight that natural selection drives MHC evolution in amphibians, and originally explores the role of SS in this process in a uniquely integrated experimental, theoretical and field ecological fashion.
I have worked with Bd throughout my academic career; this project allows me to focus on the hosts, which has been the target of fewer studies and is in dire need of conservation. The project will be conducted at the University of Groningen under the supervision of Dr. Maan, an expert on sexual selection and poison frogs; and Dr. Pen, a an expert in bioinformatics and modelling. Field work will be carried out in Brazilian Amazonian basin.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101028000
Start date: 01-05-2022
End date: 30-04-2024
Total budget - Public funding: 175 572,48 Euro - 175 572,00 Euro
Cordis data

Original description

Sexual selection (SS) is a strong evolutionary force that can promote or inhibit adaptation to environmental challenges. When populations face novel pathogens, SS can influence their persistence by impacting the spread of resistance alleles. The major histocompatibility complex (MHC) encodes proteins that recognize pathogens. Many vertebrates preferentially mate with partners carrying beneficial MHC alleles, conferring higher resistance to the offspring.
Here, I propose to study the role of SS in the evolutionary dynamics of amphibian resistance to chytridiomycosis (pathogen Bd), an emerging infectious disease that is causing population declines and extinctions worldwide; with poison frogs, a species-rich group in which the strength of SS differs between species. i) I will test whether mate choice is influenced by MHC and infection status of both partners. ii) I will use theoretical models to predict under which circumstances SS can accelerate the evolution of disease resistance. iii) I will use population ecology to evaluate the association between the strength of SS and species’ susceptibility to Bd in natural populations.
This project will provide fundamental scientific knowledge on the relationship between SS and the evolution of immunity by exploring the interaction between Bd and amphibian MHC. It builds on the recent insight that natural selection drives MHC evolution in amphibians, and originally explores the role of SS in this process in a uniquely integrated experimental, theoretical and field ecological fashion.
I have worked with Bd throughout my academic career; this project allows me to focus on the hosts, which has been the target of fewer studies and is in dire need of conservation. The project will be conducted at the University of Groningen under the supervision of Dr. Maan, an expert on sexual selection and poison frogs; and Dr. Pen, a an expert in bioinformatics and modelling. Field work will be carried out in Brazilian Amazonian basin.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships