FHBMicro | Fatigue Damage and Healing of Bituminous Materials: from Microscopic Mechanism towards Lifetime Extension

Summary
FHBMicro aims to train a talented young researcher through an interdisciplinary research focused on investigating the microscopic mechanisms of fatigue damage and healing of bituminous materials (BMs) to fundamentally extend the materials’ service life. The main deliverables resulting from the FHBMicro include a better understanding of the microscopic mechanisms of the BMs’ fatigue damage and healing, a trans-scale performance prediction framework and evaluation protocol of the fatigue and healing of the BMs, and an implementation of anti-fatigue and self-healing BMs and technologies in durable and sustainable road construction. Through the project, the Fellow will receive intensive scientific knowledge training in multidisciplinary field of chemistry (TUD), material science (TUD), computational modelling (TUD and RWTH), experimental characterisation (UoN) and industrial applications (Nynas and Duro Vermeer). The Fellow will also receive inter-sectoral complementary skills training in project management, intellectual property protection, teaching and supervision, and networking. The benefits brought by FHBMicro are represented by strengthening the EU scientific excellence and industry leadership in the innovation, evaluation and engineering application of the durable and sustainable road materials. The implementation of anti-fatigue and self-healing BMs and technologies in road infrastructures will extend the road service life and ultimately save natural resources like petroleum bitumen and reduce greenhouse gas emissions. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent leading researcher in the area of durable and sustainable infrastructure materials in a top European university, with a Europe-linked collaborative network.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030767
Start date: 01-04-2021
End date: 31-03-2023
Total budget - Public funding: 187 572,48 Euro - 187 572,00 Euro
Cordis data

Original description

FHBMicro aims to train a talented young researcher through an interdisciplinary research focused on investigating the microscopic mechanisms of fatigue damage and healing of bituminous materials (BMs) to fundamentally extend the materials’ service life. The main deliverables resulting from the FHBMicro include a better understanding of the microscopic mechanisms of the BMs’ fatigue damage and healing, a trans-scale performance prediction framework and evaluation protocol of the fatigue and healing of the BMs, and an implementation of anti-fatigue and self-healing BMs and technologies in durable and sustainable road construction. Through the project, the Fellow will receive intensive scientific knowledge training in multidisciplinary field of chemistry (TUD), material science (TUD), computational modelling (TUD and RWTH), experimental characterisation (UoN) and industrial applications (Nynas and Duro Vermeer). The Fellow will also receive inter-sectoral complementary skills training in project management, intellectual property protection, teaching and supervision, and networking. The benefits brought by FHBMicro are represented by strengthening the EU scientific excellence and industry leadership in the innovation, evaluation and engineering application of the durable and sustainable road materials. The implementation of anti-fatigue and self-healing BMs and technologies in road infrastructures will extend the road service life and ultimately save natural resources like petroleum bitumen and reduce greenhouse gas emissions. Uniquely, the project will enable the Fellow to obtain interdisciplinary knowledge and inter-sectoral complementary skills by building a new and exciting research field, which will pave a solid foundation for the Fellow towards his career of being an independent leading researcher in the area of durable and sustainable infrastructure materials in a top European university, with a Europe-linked collaborative network.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships