MEMORIS | Maternal Enteric Microbiota for Offspring's Repertoire development and Illness Susceptibility

Summary
Recently, it has emerged that early life exposure to commensal microbes is crucial to instruct our immune system and prevent later life autoimmune and metabolic diseases. The host lab now showed that this education begins even earlier – during gestation by signals from the maternal intestinal microbiota. Using the E. coli strain HA 107, genetically engineered to grow in vitro without the ability to persist in vivo, they demonstrated that transient intestinal colonisation of pregnant germ-free mouse dams drives neonatal innate immune maturation. However, the long-term consequences of maternal microbiota cues especially for the adaptive immune system of the adult offspring remain elusive.

The MEMORIS project (Maternal Enteric Microbiota for Offspring's Repertoire development & Illness Susceptibility) shall elucidate the long-term consequences of maternal microbial signals for the offspring’s adaptive immune system and disease susceptibility.

My specific aims are to reveal the consequences of gestational colonisation for the offspring’s (1) own intestinal microbiota composition and metabolism; (2) adaptive immune repertoire development; and (3) susceptibility to autoimmune and metabolic diseases. For this, I will colonise offspring of gestationally colonised versus germ-free mouse dams at birth and by (1) metagenomic, metatranscriptomic and metabolomic read-outs assess its dynamic microbiota development. (2) Flow cytometric and transcriptional profiling, immunglobulin gene sequencing and bacterial FACS will reveal adaptive immune repertoire maturation. Based on these results I will (3) elucidate the role of maternal microbiota signals for disease susceptibility using NOD mice modeling type 1 diabetes and high fat diet-induced non-alcoholic fatty liver disease.
I would like to establish the concept that our susceptibility to autoimmune and metabolic diseases is influenced during a “window of opportunity” that opens – not just at birth – but already during pregnancy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/744257
Start date: 01-03-2018
End date: 27-05-2020
Total budget - Public funding: 187 419,60 Euro - 187 419,00 Euro
Cordis data

Original description

Recently, it has emerged that early life exposure to commensal microbes is crucial to instruct our immune system and prevent later life autoimmune and metabolic diseases. The host lab now showed that this education begins even earlier – during gestation by signals from the maternal intestinal microbiota. Using the E. coli strain HA 107, genetically engineered to grow in vitro without the ability to persist in vivo, they demonstrated that transient intestinal colonisation of pregnant germ-free mouse dams drives neonatal innate immune maturation. However, the long-term consequences of maternal microbiota cues especially for the adaptive immune system of the adult offspring remain elusive.

The MEMORIS project (Maternal Enteric Microbiota for Offspring's Repertoire development & Illness Susceptibility) shall elucidate the long-term consequences of maternal microbial signals for the offspring’s adaptive immune system and disease susceptibility.

My specific aims are to reveal the consequences of gestational colonisation for the offspring’s (1) own intestinal microbiota composition and metabolism; (2) adaptive immune repertoire development; and (3) susceptibility to autoimmune and metabolic diseases. For this, I will colonise offspring of gestationally colonised versus germ-free mouse dams at birth and by (1) metagenomic, metatranscriptomic and metabolomic read-outs assess its dynamic microbiota development. (2) Flow cytometric and transcriptional profiling, immunglobulin gene sequencing and bacterial FACS will reveal adaptive immune repertoire maturation. Based on these results I will (3) elucidate the role of maternal microbiota signals for disease susceptibility using NOD mice modeling type 1 diabetes and high fat diet-induced non-alcoholic fatty liver disease.
I would like to establish the concept that our susceptibility to autoimmune and metabolic diseases is influenced during a “window of opportunity” that opens – not just at birth – but already during pregnancy.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016